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Random Discrete Imperfections in Millimeter
Wav~eguideSystems

GABRIELE FALCIASECCA AND SERGIO ROGAI, MEMBER, IEEE

Abstract—A method has been developed to compute the increase

of attenuation due to imperfections of finite length randomly dis-
tributed in a link. As a limit for the vanishing length tbe formulas
yield the result for random discontinuities. The appralach is quite

general and can apply to a circular wavegnide link as well as to other

cases, where tbe statistics of tbe problem are described Iby the power
spectrum of the deformation. The applications presented here show
how random spacing of the deformations causes significant
modifications on the attenuation results; as a particular case some

expressions are found to be in agreement with others previously

derived. The results are interesting in determining what random
variation in the waveguide lengths is sufficient to avoid a serious
frequency dependent effect in the attenuation characteristic of a
circular waveguide link.
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I. INTRODUCTION

N an overmoded circular waveguide link, coupling mayI arise between the propagating TEO 1 mode and the other

unwanted modes because of many different geometrical

imperfections in the guiding structure. Coupling of the TEO 1

mode with the higher order circular electric modes is the

more serious instance of such coupling and can occur

because of the presence of mirrors [1], diameter discontinui-

ties at the joints, or the manufacturing process. Attenuation

peaks, found experimentally [2], can be attributed to this
higher order circular electric mode conversion [3]. In fact

discontinuities are always present in a circular waveguide
link and eventually are causes of coupling. Diameter varia-

tions generate higher order TEO. modes, axi,s tilts, or offset

the TE ~. and TM IH modes, etc. Great attention has been

devoted to the problem of determining the increase of

attenuation due to these discrete random imperfections.

Here an approach is presented to compute the solution,
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based on the possibility of considering the discrete imperfec-

tions as a limit of continuous deformations of finite exten-

sion in space. The relation between discrete and continuous

imperfections has been described in [4] and [5] and will not

be repeated in this paper. The expected value of the increase

of losses can be computed by means of a formula involving

the power density spectrum of the deformations. Thus the

aim is a derivation of this parameter in a suitable way. In

other cases, where the statistics of the problem are described

by the spectrum itself (e.g., see some formulas of fiber optics

[6]) the same procedure can be useful. With the mathemati-

cal model presented here, it is possible to also consider the

effect of unequal spacing or other complications of the

physical model. In the applications discussed, previously

known results are found as a particular case, to emphasize

the effect of the random spacing in the case of diameter

variation and generation of higher order TEon modes.

IL MATHEMATICAL MODEL .

In this section only diameter and straightness variations

will be discussed. In fact, because of the jointing process of

the waveguide lengths, other but negligible discontinuities of

the section parameters arise. At first, as previously men-

tioned, the deformations will be considered to be ofnonvan-

ishing length and then the results for impulsive d functions

will be derived in the limit. This procedure allows us to

compute the expected value of the increase of the attenua-

tion constant ~i due to the ith coupled mode, by means of a

convolution (see for example, [7], [8]) in the cl domain:

(lb)

where Ci is the coupling coefficient (assumed real) between

the TEOI mode and the ith coupled mode, Aai + jA~i is their

propagation constant difference, and G(c) is the power
density spectrum of the deformation causing the coupling.

For small imperfections the total increase of attenuation can

be computed by means of this perturbative solution, by

ddding the contributions due to all the coupled modes for all

the deformations (one exception to the possibility of con-

sidering only modes coupled to the TEO ~ mode at a time is

quoted in [9]).
In two consecutive positions, the deformations may or

may not have correlated amplitudes; this depends on the

particular cause which produces the deformation itself. For

example, in the case of diameter variations, two consecutive

waveguide lengths can have different diameters either be-

cause of the difference in the diameters of the mandrels used

in the manufacturing process (each assumed practically as

an ideal cylinder) or because of a purely random deviation

1 As the functions representing the deformations are dependent on a
spatiaf variable, their Fourier transforms are dependent on a spatial
frequency ~.
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Fig. 1. Example of impulsive deformations in a circular waveguide fink.

from the uniform value of a unique mandrel. In the second

case one can assume that correlation does not exist between

the diameters at the beginning and at the end of a given

length of waveguide. In the first case the two values are

coincident. The two causes, in fact, act together, but in-

dependently, and thus will be taken into account one at a

time. A similar thing happens for the tilts or offsets in a

straight line, depending on the rigidity of the joints. If the

joints are not very rigid, the waveguide lengths follow the

wanted path with a series of tilts correlated to each other.

Moreover the waveguide lengths can be assumed equal or

randomly distributed around a nominal value.

To represent this physical model a suitable mathematical

description is a sequence of deformation functions. With

reference to Fig. 1, it is assumed that impulsive deformations

of a given type are present along the considered waveguide.

The variation of their position around a mean value, their

amplitude, and their length are assumed as random var-

iables of stationary processes; their shape is assumed

constant, as are their main characteristics (e.g., diameter

variation, tilt, etc.), and symmetric. Let us denote by dn(z) the

nth deformation function, by D. its amplitude, by Zn the

position of its symmetry axis, and by 2Z. its length. Having

defined a normalized variable Sn= (z – z.)/Z. each defor-

mation function can be expressed by means of a normalized

function U(su) nonvanishing only in the – 1 cs. c 1

interval:

d.(z) = D. U(Z#n + Zn). (2)

The deformation of the waveguide link is assumed as a

sequence of these random functions d.(z). Extensive discus-
sion about these impulsive processes can be found in [10],

[11], particularly when the random variables z. are Poisson

distributed. Here only a simple way to determine a general

expression for the power density spectrum is developed.

With the previous assumptions, the Fourier transform

g(c) of the function u(s.) is

In a length L.of waveguide a particular sequence~~)(z) of the

pulse function d.(z) is present. If F~)(g) denotes the Fourier
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transform of~~)(z), the power spectrum of the deformation

process is

where E( ) denotes the expected value operator. For simpli-

city, assume 2N + 1 deformations are present, ordered from

– N to N, in L If 1. denotes the difference z.;. ~ – z. and

1= E(l.), for the ergodicity of the spatial averag,e value, (4)
yields

where the subscri~t in 1%) denotes that 2N + 1

(5)

deforma-
tions are consider-d. By means of (2) and (3), (5) yields

(6)

Finally (6) can be expressed in the following way:

[
G(c)=; a+lim

(2N1+ 1) _~n _~j ““j
I

(7)
N-m

where

a = E( IZLk)D~k)12Ig(cZ$k)) 12) (8)

b~,j = “E(D\k)D$)ZJk)Zf)g(~Z~k) )[g(~Z$’)]]*

. ~– j2n((z.W – z,W)
)> forrs+j

. 0, forn=j (9)

and [ ]* denotes complex conjugate. Equation (7) is quite

general and can be assumed as a starting point for many

computations involving power spectra of impulsive

deformations.

III. APPLICATION TO A CIRCULAR WAVEGUIDE LINK

As previously mentioned, the increase of attenuation due

to the discontinuities at the joints is wanted for a circular

waveguide link. The stated formulas will be used in the limit

of the vanishing length for the d. functions, taking a constant

value for the total imperfection [5]. The resulting functions

are d functions of proper area. If, for example, the deforma-

tion is expressed by a constant curvature l/R for a length 2Z,

the area of the d function corresponds to the tc)tal angular

misalignment 2Z/R, i.e., the resulting imperfection is a tilt of

this value. In the following the d. functions will be assumed

to be of constant length 2Z because the limit for vanishing Z.

will be considered.

The first case to be considered is the case of no correlation
among the pulses of equal length 2Z. In this case the

imperfections are completely independent. B!y means of

(7)-(9), (1) yields, for Aai = O,

()A/?. 2
ai = ~ CfE(D~k)2)Z2 g ~z .

21 2n
(lo)

913

If, for example, the limit at constant angular misalignment

for vanishing Z is considered of short curvature functions,

the expression in brackets yields the expected value of the

square of the angular variations. In this case, assuming that

the expected value of the tilts is zero, (10) yields the

expression quoted in [4]. There is no difference, without

correlation, between a random distribution of the deforma-

tion along the line and a uniform distribution whose period

equals the expected value of the random distance.2

A second interesting computation is for the diameter

variations at a joint, where correlation exists. The random

variable z. can be expressed by

z“=rd+yn (11)

where the random variable v. has an expected value of zero.

Now ZD\k) is proportional to the total radius difference ~~k)

between two waveguides:

~~k) = ~~k~~ – ~~k). (12)

If a denotes the average radius of the waveguides it is

possible to write

E(A~) = O (13)

E((rn – U)2) = 02 (14)

E(AiAj) = 202, fori=j

. —d, forlj–il=l

. 0, for Ij–il >1. (15)

If U(su) is chosen so that the proportionality constant

between ZD. and ~. has unitary value, from (8) and (9) it

follows that

a = 202 Ig(~Z) 12 (16)

b~,j = –021g(~Z)12~(e- j2mJI(n-j)~+v”-vjl), for 1n – ~ 1 = 1

= o, for in–j\ >1. (17)

If the displacements v. are supposed not to be correlated, (7)

yields

G(c) = ~ lg(~Z) 12[1 – COS (2n~1) 10(V) 12] (18)

where 6(v) is the characteristic function of v. in the ~ domain

[11].

As an application of (18), the case of the Gaussian pdf of vn

is considered; if, once again, the impulsive function is

assumed as a 6(s) in the limit,(1) and (18) yield cqfor the case

of Aai = O:

~i(M) = ~ [1 – cos (A/ll)e-(A~TJ2] (19)

where T2 is E(vj) and E(vn) = O.

If (19) is compared with the corresponding expression

quoted in [4] for equally spaced conversion (z = O), one can

2 If Au, # O the convolution (1) must be performed. Nevertheless the
conclusions for vanishing Z are vafid.
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Fig. 2. Normalized expected value of attenuation constant increase a, Z/az versus frequency due to the TE02 mode, having
assumed AU= Oand z as a Parameter,for a %ntn inner diameter wavegmde,manufactured in 5-m lengths.

verify that the presence of a random spacing produces a

reduction in the oscillations versus the” frequency. For the

parameter values quoted, Fig. 2 shows the expected value of

the normalized loss increase due to the TE02 mode, having

neglected the difference in the attenuation constants. The

general expression is obtained if the convolution product of

(1) is developed for A~i #O; addition of all propagating

TEo~ modes yields

~2 m

{

~(Aa# – A~/#)zz

rx=-~c:l —
1 ~, 2

[

, Re (e- IQI1 - 2jAfrk@w112 + jAPk2)

“ (l-erf(’(’AaJ-~-’AflkH)]

[
+ Re (elAakl[ + 2jA8klkdc2+ jziok~)

“ (l-erf(’(’Auk’+++’Aflk’20)Ml}

where erf (t) represents the error function. Equation (20)

yields terms like (19), as a particular solution if IAct, I = O.

One may conclude that random spacing can strongly reduce

the oscillation versus the frequency of the attenuation curve

and thus improve the behavior of the link. As the main cause

of oscillations is the TE02 mode, (19), for this mode, it is

sufficient to determine a limit value for ~, which reduces the

frequency variation of the whole attenuation to the desired

level. In practice a variance value of some centimeters, for

usual waveguide lengths, is sufficient to obtain a suitable

smoothing of the attenuation curve.

In Fig. 3 some plots of cd/02 versus frequency are pre-

sented, for the parameter values quoted in the captions,

having considered the I Aak I values of all propagating

circular electric modes in a 50-mm inner diameter copper

waveguide. In order to derive from (20) the particular results

for equally spaced discontinuities quoted in [4], an asymp-

totic expression for the erf (t) is useful [12] before taking the

limit for vanishing ~.

IV. CONCLUSION

A general approach to determine the increase of attenua-

tion due to randomly distributed deformations of finite

length has been discussed. Some expressions for unequally

spaced discontinuities have been derived. Applications to a
circular waveguide link are presented in order to emphasize

the effect of a random spacing for diameter variations. The

same procedure is useful if the case of correlated tilts has to

be considered. In this case the coupling coefficients and the

attenuation constants of modes have to be computed for the

particular waveguide examined: this can be readily per-

formed by means of the program PAGOM [13]. In fact it is

not possible to assume, for all the particular wavegulde

structures, the TEl~ and TMl” mode propagation constants

referred to an ‘equal diameter copper waveguide as it is

allowed, in first approximation, for the circular electric

modes TEO; ,
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Fig. 3. Normalized expected value of attenuation constant increase cd/u2 versus frequency due to all propagating circular
electric modes, having assumed ~ as a parameter and the values of IAui I of a 50-mm inner diameter copper waveguide,
manufactured in 5-m lengths.
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