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Random Discrete Imperfections in Millimeter
Waveguide Systems

GABRIELE FALCIASECCA aND SERGIO ROGAI, MEMBER, IEEE -

Abstract—A method has been developed to compute the increase
of attenuation due to imperfections of finite length randomly dis-
tributed in a link. As a limit for the vanishing length the formulas
yield the result for random discontinuities. The approach is quite
general and can apply to a circular waveguide link as well as to other
cases, where the statistics of the problem are described by the power
spectrum of the deformation. The applications presented here show
how random spacing of the deformations causes significant
modifications on the attenuation results; as a particular case some
expressions are found to be in agreement with others previously
derived. The results are interesting in determining what random
variation in the waveguide lengths is sufficient to avoid a serious
frequency dependent effect in the attenuation characteristic of a
circular waveguide link.
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I. INTRODUCTION

N an overmoded circular waveguide link, coupling may
Iarise between the propagating TE, mode and the other
unwanted modes because of many different geometrical
imperfections in the guiding structure. Coupling of the TE 4
mode with the higher order circular electric modes is the
more serious instance of such coupling and can occur
because of the presence of mirrors [1], diameter discontinui-
ties at the joints, or the manufacturing process. Attenuation
peaks, found experimentally [2], can be attributed to this
higher order circular electric mode conversion [3]. In fact
discontinuities are always present in a circular waveguide
link and eventually are causes of coupling. Diameter varia-
tions generate higher order TE,, modes, axis tilts, or offset
the TE,, and TM,, modes, etc. Great attention has been
devoted to the problem of determining the increase of
attenuation due to these discrete random imperfections.
Here an approach is presented to compute the solution,
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based on the possibility of considering the discrete imperfec-
tions as a limit of continuous deformations of finite exten-
sion in space. The relation between discrete and continuous
imperfections has been described in [4] and [5] and will not
be repeated in this paper. The expected value of the increase
of losses can be computed by means of a formula involving
the power density spectrum of the deformations. Thus the
aim is a derivation of this parameter in a suitable way. In
other cases, where the statistics of the problem are described
by the spectrum itself (e.g., see some formulas of fiber optics
[6]) the same procedure can be useful. With the mathemati-
cal model presented here, it is possible to also consider the
effect of unequal spacing or other complications of the
physical model. In the applications discussed, previously
known results are found as a particular case, to emphasize
the effect of the random spacing in the case of diameter
variation and generation of higher order TE;, modes.

II. MATHEMATICAL MODEL

In this section only diameter and straightness variations
will be discussed. In fact, because of the jointing process of
the waveguide lengths, other but negligible discontinuities of
the section parameters arise. At first, as previously men-
tioned, the deformations will be considered to be of nonvan-
ishing length and then the results for impulsive  functions
will be derived in the limit. This procedure allows us to
compute the expected value of the increase of the attenua-
tion constant o, due to the ith coupled mode, by means of a
convolution (see for example, [7], [8]) in the {' domain:

o; = 4C? jjo G(C)W(—Az——ﬁ—i —{Aw)dl  (la)
W(tA) = — 21 A% (1b)

|Aso;|* + (2r8)?

where C; is the coupling coefficient (assumed real) between
the TE,, mode and the ith coupled mode, Ax; + jAB;is their
propagation constant difference, and G({) is the power
density spectrum of the deformation causing the coupling.
For small imperfections the total increase of attenuation can
be computed by means of this perturbative solution, by
adding the contributions due to all the coupled modes for all
the deformations (one exception to the possibility of con-
sidering only modes coupled to the TE,; mode at a time is
quoted in [9]).

In two consecutive positions, the deformations may or
may not have correlated amplitudes; this depends on the
particular cause which produces the deformation itself. For
example, in the case of diameter variations, two consecutive
waveguide lengths can have different diameters either be-
cause of the difference in the diameters of the mandrels used
in the manufacturing process (each assumed practically as
an ideal cylinder) or because of a purely random deviation

1 As the functions representing the deformations are dependent on a
spatial variable, their Fourier transforms are dependent on a spatial
frequency (.
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Fig. 1. Example of impulsive deformations in a circular waveguide link.

from the uniform value of a unique mandrel. In the second
case one can assume that correlation does not exist between
the diameters at the beginning and at the end of a given
length of waveguide. In the first case the two values are
coincident. The two causes, in fact, act together, but in-
dependently, and thus will be taken into account one at a
time. A similar thing happens for the tilts or offsets in a
straight line, depending on the rigidity of the joints. If the
joints are not very rigid, the waveguide lengths follow the
wanted path with a series of tilts correlated to each other.
Moreover the waveguide lengths can be assumed equal or
randomly distributed around a nominal value.

To represent this physical model a suitable mathematical
description is a sequence of deformation functions. With
reference to Fig, 1,itis assumed that impulsive deformations
of a given type are present along the considered waveguide.
The variation of their position around a mean value, their
amplitude, and their length are assumed as random var-
iables of stationary processes; their shape is assumed
constant, as are their main characteristics (e.g., diameter
variation, tilt, etc.), and symmetric. Let us denote by d(z) the
nth deformation function; by D, its amplitude, by z, the
position of its symmetry axis, and by 2Z,, its length. Having
defined a normalized variable s, = (z — z,)/Z, each defor-
mation function can be expressed by means of a normalized
function U(s,) nonvanishing only in the —1<s,<1
interval:

d(z)=D,U(Z,s, + z,). ()
The deformation of the waveguide link is assumed as a
sequence of these random functions d,(z). Extensive discus-
sion about these impulsive processes can be found in [10],
[11], particularly when the random variables z, are Poisson
distributed. Here only a simple way to determine a general
expression for the power density spectrum is developed.

With the previous assumptions, the Fourier transform
g(¢) of the function U(s,) is

g(0)= f_ll U(s,)e™ 2" ds,. 3)

In a length L of waveguide a particular sequence f $(z) of the
pulse function d,(z) is present. If F{’({) denotes the Fourier
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transform of f#(z), the power spectrum of the deformation
process is

@)

where E( ) denotes the expected value operator. For simpli-
city, assume 2N + 1 deformations are present, ordered from
—N to N, in L If I, denotes the difference z,;, — z, and
1 = E(l,), for the ergodicity of the spatial average value, (4)
yields

6()= lim 1 B(| FE()P)

L-w

1

G = @N +1)

E(|FRO)) (5)

lNﬁ

where the subscript in F¥ denotes that 2N + 1 deforma-
tions are considered. By means of (2) and (3), (5) yields

2
L lim 1 ( )

Tnow CN +1)
6)

N

Z ng) DS.") g ( C Zf.") ) e~ 27 ®

—Nn

Gl =

Finally (6) can be expressed in the following way:

I ot S T 0

G(0)= ; [a + lim PID)
where
a=E(|ZPD}P [ |g(CZP)|*)
by = E(DPDPZPZPG(LZ g (CZP )

forn#j

®)

. g~ J2nlEn®—z ,m))
&

=0, forn=j ©)
and [ ]* denotes complex conjugate. Equation (7) is quite
general and can be assumed as a starting point for many
computations involving power spectra of impulsive

deformations.

III. APPLICATION TO A CIRCULAR WAVEGUIDE LINK

As previously mentioned, the increase of attenuation due
to the discontinuities at the joints is wanted for a circular
waveguide link. The stated formulas will be used in the limit
of the vanishing length for the d,, functions, taking a constant
value for the total imperfection [5]. The resulting functions
are d functions of proper area. If, for example, the deforma-
tion is expressed by a constant curvature 1/R foralength 2Z,
the area of the 4 function corresponds to the total angular
misalignment 2Z/R, i.e., the resulting imperfection is a tilt of
this value. In the following the d, functions will be assumed
to be of constant length 2Z because the limit for vanishing Z,,
will be considered.

The first case to be considered is the case of no correlation
among the pulses of equal length 2Z. In this case the
imperfections are completely independent. By means of

(7}-09), (1) yields, for Ax; =0,
ABi ,
o227

1

) 2p(p*)2
2= 5, CIE(DI?)Z?

(10)
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If, for example, the limit at constant angular misalignment
for vanishing Z is considered of short curvature functions,
the expression in brackets yields the expected value of the
square of the angular variations. In this case, assuming that
the expected value of the tilts is zero, (10) yields the
expression quoted in [4]. There is no difference, without
correlation, between a random distribution of the deforma-
tion along the line and a uniform distribution whose period
equals the expected value of the random distance.?

A second interesting computation is for the diameter
variations at a joint, where correlation exists. The random
variable z, can be expressed by

(11)
where the random variable v, has an expected value of zero.

Now ZD¥ is proportional to the total radius difference A%
between two waveguides:

z,=nl+y,

AP =1, — (12)
If a denotes the average radius of the waveguides it is

possible to write

E(4,)=0 (13)
E((ry — af) = o (14)
E(A;A;))=26%  fori=j
=—0o%, for |j—i| =1
=0, for|j—i|>1 (15)

If U(s,) is chosen so that the proportionality constant
between ZD, and A, has unitary value, from (8) and (9) it
follows that

a=20%|g(Z))? (16)
b, ;= —0?|g({Z)PE(e” 2™=+m=vl) for [n—j| =1
=0, for|n—j|>1 (17)

If the displacements v, are supposed not to be correlated, (7)
yields

202

G() == 19(LZ)'[1 — cos 2aLl)|OG) ] (18)

where 6(v)is the characteristic function of v, in the { domain
[11].

As an application of (18), the case of the Gaussian pdf of v,
is considered; if, once again, the impulsive function is
assumed as a 6(s) in the limit, (1) and (18) yield «;for the case
of Aa; = 0:

C2 2
[L — cos (ABl)e~897]

%(AB) =

where 7 is E(v?) and E(v,,) =0.
If (19) is compared with the corresponding expression
quoted in [4] for equally spaced conversion (z = 0), one can

(19)

2 If Ax, # O the convolution (1) must be performed. Nevertheless the
conclusions for vanishing Z are valid.
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Fig 2. Normalized expected value of attenuation constant increase o;l/o? versus frequency due to the TE,, mode, having
assumed Ax =0 and t as a parameter, for a 50-mm inner diameter waveguide, manufactured in 5-m lengths.

verify that the presence of a random spacing produces a
reduction in the oscillations versus the frequency. For the
parameter values quoted, Fig. 2 shows the expected value of
the normalized loss increase due to the TE,, mode, having
neglected the difference in the attenuation constants. The
general expression is obtained if the convolution product of
(1) is developed for Aw; s 0; addition of all propagating
TE x modes yields

olBu— Apy2ye2

I 2

. Re [(e“malc“"ZJAﬂkIA“khz'*'jAﬁkl)

. (1 _ erf(r(lAkal *%ﬁ"“ﬂ")m

+ Re [(e|Aak|l+ 2 jAPk]| Aaylt2 +jAﬂkl)

(el ) o

where erf (¢) represents the error function. Equation (20)
yields terms like (19), as a particular solution if |A«,| = 0.
One may conclude that random spacing can strongly reduce
the oscillation versus the frequency of the attenuation curve
and thus improve the behavior of the link. As the main cause
of oscillations is the TE,, mode, (19), for this mode, it is
sufficient to determine a limit value for 7, which reduces the
frequency variation of the whole attenuation to the desired

level. In practice a variance value of some centimeters, for
usual waveguide lengths, is sufficient to obtain a suitable
smoothing of the attenuation curve.

In Fig. 3 some plots of al/o? versus frequency are pre-
sented, for the parameter values quoted in the captions,
having considered the |Aa,| values of all propagating
circular electric modes in a 50-mm inner diameter copper
waveguide. In order to derive from (20) the particular results
for equally spaced discontinuities quoted in [4], an asymp-
totic expression for the erf (t) is useful [12] before taking the
limit for vanishing 7.

IV. CONCLUSION

A general approach to determine the increase of attenua-
tion due to randomly distributed deformations of finite
length has been discussed. Some expressions for unequally
spaced discontinuities have been derived. Applications to a
circular waveguide link are presented in order to emphasize
the effect of a random spacing for diameter variations. The
same procedure is useful if the case of correlated tilts has to
be considered. In this case the coupling coefficients and the
attenuation constants of modes have to be computed for the
particular waveguide examined: this can be readily per-
formed by means of the program PAGOM [13]. In fact it is
not possible to assume, for all the particular waveguide
structures, the TE,, and TM,, mode propagation constants
referred to an equal diameter copper waveguide as it is
allowed, in first approximation, for the circular electric
modes TE,;,.
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Fig. 3. Normalized gxpected value of attenuation constant increase al/o? versus frequency due to all propagating circular
electric modes, having assumed 1 as a parameter and the values of |Aa,~| of a 50-mm inner diameter copper waveguide,

manufactured in 5-m lengths.
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